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NOTE 

A Technique for Treating Dirichlet Conditions 
at Infinity in Numerical Field Problems 

The simplest numerical treatment of Dirichlet boundary conditions at i&&y 
is to assume that the solution takes a sufficiently accurate approximation to its 
asymptotic value on the boundary of a finite domain which is covered by a suitable 
grid. Probably only a small part of the domain is of primary interest where the 
solution is varying quite rapidly and, therefore, the mesh size must be small here. 
The rest of the domain may be covered by a coarser grid. In the technique described 
here, this latter part of the domain is transformed. The resulting transformed region 
is covered by a uniform grid which gives a graded grid in the original region. The 
remaining part of the domain, which is of primary interest, is covered by a uniform 
grid. By a suitable choice of transformation and grid sizes it is possible to match 
the two parts of the domain by a simple overlap method if the equations involve 
only first and second differences. The truncation error of the method is smaller 
than that obtained using a graded mesh from the start and setting up suitable 
difference equations and, unlike mesh doubling techniques, the method gives 
tridiagonal matrices. 

As a simple example, we describe the technique for the parabolic equation 

au as au -=aG+bz at (1) 

for the domain co > x b 0, t > 0. a(>O) and b(>O) are constants and the 
boundary conditions are: U(X, 0) known for x 2 0, ~(0, t) known for t > 0 and 
u(m, t) = 0 for t 2 0. 

We divide the semi-infinite line x >, 0 into two parts, 0 < x -=c 1 and x >, 1. 
For x > 1, we change the independent variable using the transformation z = z(x), 
where z(x) is a real dserentiable monotonic increasing function of x with a unique 
inverse x = x(z) for all x > 1. We also assume that Z(X) -+ z, as x -+ co where 
z, is finite. dz(x)/dx may be considered as a function of Z. We write 

4-4 f(z(x>) = dx 

when, for x > 1, we have f@(x)) > 0. 
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Equation (1) thus becomes 

We first replace equations (1) and (3) by a partial discret~zat~o~ leavi 
continuous variable. For 0 < x < 4, we approximate to (I) usin 
h with N/r. = 1 for some integer N. The grid points are xz = ih, i 
the partial difference approximation to (1) is 

where u,(t) is the approximation to u(xi , t) and u,,(t) = ~(0, t). 
For x > I we approximate to (3). On the z line we use a mesh length k deemed by 

The grid points on the z line are 

where M is the largest integer satisfying 

From (5) and (6), it follows that X&1 = x(z& an XN = x(23 and thus ahe two 
grids overlap. On the x line, we further define x = x(zJ for N + I < i < 
unless equality is satisfied in (7) when xM is not defined. 

Equation (3) is replaced by 

i = N, (N + I),... (M - I), 

where again ui(t) is the approximation to u(x( ) t) and f’$ = f(z 
condition is taken as uM = 0. If equality is satisfied in (7) this is 
boundary condition of the problem, alternatively xM 
ensure that the approximation UM = 0 to the co 

Equations (4) and (8) form a set of M - 1 o 
can be integrated by one of the usual methods for parabolic eq~t~~~s. 
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TRUNCATION ERROR 

The truncation error introduced by replacing (1) by (4) is O(@). By the Mean 
Value Theorem, it follows from (5) that 

k = We) where zN-r < 20 < zN (9) 

The truncation error, involved in replacing (3) by (S), which can be found by Taylor 
series, is 

In the usual method of dealing with a graded mesh we replace (1) by 

au, 2a %+1 - ui ui - %-I 

- at - hi + h,Ml ( hi hi-1 ) ( 

+ b u;l+l;hy 
(11) 

z i 1 

where the grid points are xi , i = 0, l,... and hi = xi,1 - xi . The truncation 
error is 

- ; ’ (hi - h,-J ($) - ; * (hi - h,J (g) + O(h2) (12) 
xi 26 

where h = max(h,-l , hi). This is considerably larger than (lo), h, may be quite 
large andf(z) is a well behaved function. Brown [l] shows that if the changes in 
mesh size in (11) are gradual then the truncation error is O(h2). From (12) we can 
see that this requires h, - hiwl = O(h2) which is not satisfied for the grid points 
occuring in the following numerical cases. 

NUMERICAL CASES 

If U(X, 0) = 0 for x 3 0, ~(0, t) = 1 for t > 0 and a = 1, b = 0.5, the solution 
of (1) is 

If? 
U(x, t) = 2 * erfc (-5 + I_ 

22/t 4 1 + t e-tz erfc (-5 _ $) 
22/t 

where 
2 m erfc(x) = ___ d77 s m e-“’ dx 

The technique was tested with h = 0.1 using the Crank-Nicholson method with 
time step 0.005. In Table I we illustrate three different choices of z(x). In all cases 
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'FABLE I 

z~x) --l/X -l/Cl + xl” -e-z2 

k 0.11111 0.02701 0.03869 
X.+f cc 11.01 3.929 
El 18 4 9 
& 69 47 194 

= 19. El x 1O-5 and E, x 1O-5 are the maximum a 
= 1.0 for x < I and x > 1 respectively. If a constant m 

and ~(2.0, t!> = 0 is taken as the boundary condition, ISI = 4800. 

EXTENSIQN TO HIGHER QMENSPONS AND 

There is no difficulty in extending the metho to problems in two or more dimen- 
sions. For example, the author has applied it to an elliptic proble 
plane using the transformations z = z(x) for x > 1 and w = W( y 
This does not give a conformal transformation but is useful in p 
spaced points in the x-direction near y = 0, and in the ire&ion near x = 0. 

If differences of higher order than two are used (so tha re than three points 
in each space direction are involved in the difference equat~o~s~ the simple rn~t~h~~~ 
te&nique used here is not applicable and it is necessary to use special di 
formulae near the change in grids. 

1. R. EL BROWN, J. Sot. Indust. Appl. Math. 10, 475 (1962). 


